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 ABSTRACT

Between May 6 and May 18, 2000, the Cerro Grande/Los Alamos wildfire burned approximately 43,000 acres (17,500 ha)
and 235 residences in the town of Los Alamos, NM. Initial estimates of forest damage included 17,000 acres (6,900 ha) of
70-100% tree mortality. Restoration efforts following the fire were complicated by the large scale of the fire, and by the
presence of extensive natural and man-made hazards. These conditions forced a reliance on remote sensing techniques for
mapping and classifying the burn region. During and after the fire, remote-sensing data was acquired from a variety of
aircraft-based and satellite-based sensors, including Landsat 7. We now report on the application of a machine learning
technique, implemented in a software package called GENIE, to the classification of forest fire burn severity using Landsat 7
ETM+ multispectral imagery. The details of this automatic classification are compared to the manually produced burn
classification, which was derived from field observations and manual interpretation of high-resolution aerial color/infrared
photography.
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1. INTRODUCTION: REMOTE SENSING OF FOREST FIRES

Between May 6 and May 18, 2000, the Cerro Grande/Los Alamos wildfire burned approximately 43,000 acres (17,500 ha) of
forest and 235 residences in the town of Los Alamos, New Mexico (USA). Initial estimates of forest damage included 17,000
acres (6,900 ha) suffering 70-100% tree mortality. Some of the affected agencies and tribes included the United States Forest
Service, the Department of Energy, the National Park Service, Santa Clara Pueblo, and the Pueblo of San Ildefonso.
Restoration efforts following the fire were complicated by the large scale of the fire, and by the presence of extensive natural
and man-made hazards. These conditions forced a reliance on remote sensing techniques for mapping and classifying the
burn region. During and after the fire, remote-sensing data was acquired from a variety of aircraft-based and satellite-based
sensors, including Landsat 7, to evaluate the impact of the fire.

Remote sensing of forest fires has traditionally involved  human interpretation of visible wavelength and/or infrared
photography.  Since the introduction of aircraft and satellite mounted multi-spectral imaging instruments, e.g., the Advanced
Very High Resolution Radiometer1 (AVHRR) on the NOAA Polar-orbiting Operational Environmental Satellite (POES)
series, and the Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) instruments on the Landsat2 series of Earth
observation satellites, several physics-based and empirical algorithms for detecting forest fires have appeared in the literature.
Two general approaches exist: detection of “hot-spots” and fire fronts, using, e.g., thresholds on brightness temperature3,4,5,6,7
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Grande/Los Alamos wildfire in progress on May 9, 2000 (Landsat Path 33, Row 35), in which fire fronts due to the wildfire
and the back-burning efforts of the fire fighters are clearly visible (Fig. 1).

For the present work, however, we are interested in mapping and classifying the post-fire burn scar.  A number of researchers
have investigated the use of  Landsat TM imagery for measuring wildfire impact by mapping of the burn scar.  For example,
Lobo et al8 apply a combination of spectral image segmentation and hierarchical clustering to the mapping and analysis of
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fires in Mediterranean forests.  Kushla and Ripple9 use Landsat imagery to map forest survival following a wildfire in
western Oregon (USA), and investigate linear combinations of post-fire and multi-temporal TM band ratios and differences.

We now report on the application of a machine learning technique to the classification of forest fire burn severity using
Landsat 7 ETM+ multispectral imagery. The details of this automatic classification are compared to a manually produced
burn classification, which was derived from field observations and human photo-interpretation of high-resolution aerial
color/infrared photography.

2. MACHINE LEARNING: GENETIC ALGORITHM + SUPERVISED CLASSIFIER

GENIE
10,11,12,13 is an evolutionary computation (EC) software system, using a genetic algorithm14,15,16 (GA) to assemble image-

processing algorithms from a collection of low-level (“primitive”) image processing operators (e.g., edge detectors, texture
measures, spectral operations, and various morphological filters). This system has been shown to be effective in looking for
complex terrain features, such as, e.g., golf courses17. GENIE can sequentially extract multiple features for the same scene to
produce terrain classifications18. GENIE has been described at length elsewhere (see previous references), so we will only
present a brief description of the system here.

GENIE follows the classic evolutionary paradigm: a population of candidate image-processing algorithms is randomly
generated, and the fitness of each individual assessed from its performance in its environment, which for our case is a user-
provided training scene. After fitness has been assigned, reproduction with modification follows via the evolutionary
operators of selection, crossover, and mutation, applied to the most fit members of the population. The process of fitness
evaluation and reproduction with modification is iterated until some stopping condition is satisfied.

The algorithms assembled by GENIE will generally combine spatial and spectral processing, and the system was in fact
designed to enable spatio-spectral image processing experimentation.  Each individual chromosome in the population
consists of a fixed-length string of genes.  Each gene in Genie corresponds to a primitive image processing operation, and so
the whole chromosome describes an algorithm consisting of a sequence of primitive image processing steps.  We now briefly
describe our method of providing training data, our encoding of image-processing algorithms as chromosomes for
manipulation by the GA, and our method for evaluating the fitness of individuals in the population.

Figure 1. Wildfire hotspots, May 9, 2000: Bright pixels
within the white boxes are wildfire hotspots. The town
and laboratory of Los Alamos lie along the right edge of
this image. Pixel size: 30m, ETM+ bands 7,5,3.

Figure 2. Post-fire, July 19, 2000: Bright region in
center of image is the burn scar.  Los Alamos town
lies against the underside of the burn scar. Topography
changes from forested mountains (left) to bare mesas.



2.1.  Training Data
The environment for the population consists of one or a number of training scenes.  Each training scene contains a raw multi-
spectral image data cube, together with a weight plane and a truth plane.  The weight plane identifies the pixels to be used in
training, and the truth plane locates the features of interest in the training data. Providing sufficient quantities of good training
data is a crucial to the success of any machine learning technique. In principle, the weight and truth planes may be derived
from an actual ground campaign (i.e., collected on the ground at the time the image was taken), may be the result of applying
some existing algorithm, and/or may be marked-up by hand using the best judgement of an analyst looking at the data.  We
have developed a graphical user interface (GUI), called Aladdin, for manual marking up of raw imagery. Using Aladdin, the
analyst can view a multi-spectra image in a variety of ways, and can mark up training data by painting directly on the image
using the mouse. Training data is ternary-valued, with the possible values being “true”, “false”, and “unknown”. True defines
areas where the analyst is confident that the feature of interest does exist.  False defines areas where the analyst is confident
that the feature of interest does not exist. Unknown pixels do not influence the fitness of a candidate algorithm.

2.2.  Representation of Image-Processing Algorithms
Traditional genetic programming19 (GP) uses a variable sized (within limits) tree representation for algorithms. Our
representation differs in that it allows for reuse of values computed by sub-trees, i.e. the resulting algorithm is a graph rather
than a tree.  The image processing algorithm that a given chromosome represents can be thought of as a directed acyclic
graph where the non-terminal nodes are primitive image processing operations, and the terminal nodes are individual image
planes extracted from the multi-spectral image used as input. Our representation also differs in that the total number of nodes
is fixed (although not all of these may actually be used in the final graph), and crossover is carried out directly on the linear
representation.

We have restricted our “gene pool” to a set of useful primitive image processing operators (“genes”).  These include spectral,
spatial, logical and thresholding operators. The set of morphological operators is restricted to function-set processing
morphological operators, i.e., gray-scale morphological operators having a flat structuring element.  The sizes and shapes of
the structuring elements used by these operators is also restricted to a pre-defined set of primitive shapes, which includes the
square, circle, diamond, horizontal cross and diagonal cross, and horizontal, diagonal, and vertical lines.  The shape and size
of the structuring element are defined by operator parameters.  Other local neighborhood/windowing operators such as mean,
median, etc., specify their kernels/windows in a similar way.  The spectral operators have been chosen to permit weighted
sums, differences and ratios of data and/or “scratch” planes, where a scratch plane is a block of memory for storing
intermediate calculations within a candidate image-processing algorithm.

A single gene consists of an operator, plus a variable number of input arguments specifying from where input is read, output
arguments specifying where output is to be written, and any additional parameters that might be required to specify how the
specific operator works (e.g., the diameter and shape of a structuring element used in a morphological filter). The operators
used in Genie take one or more distinct image planes as input, and generally produce a single image plane as output.  Input
can be taken from any data plane in the training data image cube.  Output is written to one of a number of scratch planes,
temporary workspaces where an image plane can be stored.  Genes can also take input from scratch planes, but only if that
scratch plane has been written to by another gene positioned earlier in the chromosome sequence. We use a notation for
genes10 that is most easily illustrated by an example: the gene [ADDP rD0 rS1 wS2] applies pixel-by-pixel addition to
two input planes, read from data plane 0 and from scratch plane 1, and writes its output to scratch plane 2.  Any additional
required operator parameters are listed after the output arguments.

Note that although all chromosomes have the same fixed number of genes, the effective length of the resulting algorithm may
be smaller than this.  For instance, an operator may write to a scratch plane that is then overwritten by another gene before
anything reads from it.  GENIE performs an analysis of chromosome graphs when they are created and only carries out those
processing steps that actually affect the final result.  Therefore, the fixed length of the chromosome acts as a maximum
effective length.

2.3.   Supervised Classification and Fitness Evaluation
Each candidate image-processing algorithm generates a number of intermediate feature planes (or “signature” planes), which
are then combined to generate a Boolean-valued mask for the feature of interest.  This combination is achieved using a
standard supervised classifier (we use the Fisher linear discriminant20), and an optimal threshold function.

Complete (or “hard”) classification requires that the image-processing algorithm produce a binary-valued output plane for
any given scene.  It is possible to treat, e.g., the contents of the first scratch plane as the final output for that candidate image-



processing algorithm (thresholding would generally be required to obtain a binary result, though Genie can choose to apply
its own Boolean thresholding functions).  However, we have found it to be useful to perform the combination of the data and
scratch planes using a non-evolutionary method, and have implemented a supervised classifier backend.  To do this, we first
select a subset of the scratch planes and data planes to be “signature” planes. For the present experiments, this subset consists
of just the scratch planes.  We then use the provided training data and the contents of the signature planes to derive the Fisher
Discriminant, which is the linear combination of the signature planes that maximizes the mean separation in spectral terms
between those pixels marked up as “true ”and those pixels marked up as “false”, normalized by the total variance in the
projection defined by the linear combination.  The output of the discriminant-finding phase is a real-valued single-plane
“answer” image.  This is reduced to a binary image by exhaustive search over all the training pixels to find the threshold
value that minimizes the total number of misclassifications (false positives plus false negatives) on the training data.

The fitness of a candidate solution is given by the degree of agreement between the final binary output plane and the training
data. This degree of agreement is determined by the Hamming distance between the final binary output of the algorithm and
the training data, with only pixels marked as true or false (as recorded in the weight plane) contributing towards the metric.
The Hamming distance is then normalized so that a perfect score is 1000.

2.4.  Software Implementation
GENIE can search a rich and complex feature space using its gene pool of standard primitive image processing operators, and
the results of additional analyst-selected algorithms. The system employs both spectral and spatial image analysis techniques
in combination, and can in principal simultaneously exploit data from different sensors (e.g., optical imagery plus multi-
spectral imagery plus altimeter data or digital elevation models). The ability to combine diverse datasets requires that the data
be co-registered, which requires use of some other package (e.g., RSI's ENVI21 or ERDAS’s Imagine22 software packages).

Our genetic algorithm code has been implemented in object-oriented Perl.  This provides a convenient environment for the
string manipulations required by the evolutionary operations, and easy access to the underlying operating system (Linux).
Chromosome fitness evaluation is the computationally intensive part of the evolutionary process, typically taking 90% of our
total processing time. We currently use RSI’s IDL21 language and image processing environment for this core processing,
because of its visualization environment, and its ability to handle a diverse set of imagery formats.  Within IDL, individual
genes correspond to single primitive image operators, which are coded as IDL procedures.   A chromosome can then be
represented as an IDL batch executable.  Many of our primitive operators do not exist in standard IDL, so we have developed
an external library of C code called by IDL.  In the present implementation,  an IDL session is opened at the start of a run and
communicates with the Perl code via a two-way UNIX pipe.  This pipe is a low-bandwidth connection. Only the IDL session
needs to access the input and training data (possibly hundreds of Megabytes), which requires a high-bandwidth connection.
The Aladdin training data mark-up application was written in Java. Running on a single, fast Linux/Intel workstation, the
system typically requires a few hours to evolve an image-processing algorithm. Re-application of an evolved image-
processing algorithm to the same or a new image typically takes seconds to minutes.

3. TRAINING AND RESULTS
3.1.  Training Data
The remotely-sensed images used in this paper are Landsat 7 ETM+ 30 meter multi-spectral data (ETM+ bands 1–5 and 7).
These scenes are Level 1G radiance corrected and georeferenced standard data products obtained via the U.S. Geological
Survey (USGS) EarthExplorer23 web site.  We used a post-fire Landsat scene from July 17, 2000, Path 34 and Row 35. The
image displayed in Fig. 2 is a false-color image, which has then been converted to gray-scale and has had its contrast
enhanced for the printing process.  As we are interested in mapping burn scars, we generally view the data using a
Visible/Infrared/Thermal pattern of a thermal IR band (ETM + band 7, "" �� for the red component, a near IR band for the
green component (band 5, #$% �), and a visible red band for the blue component (band 3, &$$ �).  A Landsat 7 Path/Row
swath has an across-track field-of-view of approximately 185 km, with similar along-track length, resulting in a field-of-view
of approximately 34,000 sq.km, which is much larger than needed for this study, and presents memory problems for our
software if we attempt to ingest the whole scene.  Hence, we spatially subset the image to a 1000 pixel x 1000 pixel region
centered on the Los Alamos National Laboratory.  We chose not to use the 60m thermal or 15m panchromatic data in the
following analysis, as we wished to investigate evolution without the added complication of re-sampling of data.

We did not have any atmospheric measurements available for the scene, so we did not attempt to carry out any corrections for
haze or atmosphere. The topography of Los Alamos is complex, consisting of a dormant volcano (the Jemez Mountains)
rising to approximately 10,000 feet (3.3km), surrounded by a radiating network of mesas at 7,000 – 8,000 feet, falling off to
the Rio Grande river valley at approximately 6,500 feet elevation.  Traditionally, illumination effects due to complex



topography can be approximately “factored out” by using band ratios, or removed using principal components analysis (see,
e.g., Ref. 24).  Here, we are interested in the GENIE software’s ability to derive results based on the raw imagery, and do not
add any additional band ratio or band difference planes.

Our training data was based on the official Cerro Grande Burned-Area Emergency Rehabilitation (BAER) Team’s burn
severity map, Figure 3, which was produced by trained observers flying over the fire, and visual inspection of high-resolution
(~1 meter) aerial color/infrared photography collected during and immediately after the fire.  Using this map as a guide, we
marked up several regions of the Landsat image as almost certainly “burn”, and several regions as almost certainly “non-
burn”, as shown in Figure 4. The BAER Team assign “burn severity” on the basis of tree mortality – low burn severity
corresponds to grass fire and low tree mortality, medium severity burn classification implies crown fire and majority tree
mortality (more than half of the trees in the marked region are dead), and the high severity burn classification requires that 70
– 100% of the trees are dead.  The Cerro Grande wildfire tended to produce either high severity or low severity burn, with
only a relatively small fraction of the burn classified as medium burn severity in the BAER Team maps.  This was mostly due
to the over-grown nature of the Ponderosa  pine/mixed conifer forest which suffered most of the damage.  Major species
present include Pinus ponderosa (Ponderosa Pine), Pseudotsuga menzii (Douglas fir), Abies concolor (White fir), Populus
tremuloides (Aspen), Juniperus monosperma (Juniper), and Pinus edulis (Piñon). Note that we have also tried evolving
algorithms from training data based purely on photo-interpretation of the 30m Landsat scene, and have obtained similar
results.  This is almost certainly due to the fact that in the case of the Cerro Grande wildfire the burn damage was sufficiently
catastrophic that simple inspection of the 30m imagery allows accurate marking of “burn” and “non-burn” regions

3.2.  Evolved Image-Processing Algorithm
The system was run for with a population of 50 chromosomes, each having a fixed length of 20 genes, and 3 intermediate
feature (“scratch”) planes. The GA was allowed to evolve for 30 generations, in this case, evaluating 1282 distinct candidate
image processing algorithms, which is very small compared to search space of possible algorithms given our representation.
This required approximately 7 hours of wall-clock time running on a 500MHz Linux/Intel Pentium 2 workstation.

The best evolved image-processing algorithm had the chromosome,

[OPEN rD1 wS1 1 1][ADDS rD4 wS3 0.34][NEG rS1 wS1][MULTP rD4 rS3 wS2]
[LINCOMB rS1 rD6 wS3 0.11][ADDP rS1 rS3 wS1][SUBP rS1 rD5 wS1]

Figure 3. BAER Team burn-severity map over
topographic map: Medium gray region marks high
severity burn, pale gray region marks low severity/un-
burned region: http://www.baerteam.org/cerrogrande

Figure 4. Training Data over raw imagery: White
patches mark “burn” regions.  Gray patches mark
“non-burn” regions. Note: this image is presented at a
larger spatial scale than Figure 3.



and is shown as a diagram in Figure 5, where each node (gene) in the graph is labeled by its position along the length of the
chromosome and by our mnemonic for the operator (e.g., 1. OPEN for a morphological opening operator).   In words, the
image-processing algorithm works as follows.  Note that GENIE converts the byte-valued raw data to real-valued data (64 bit
doubles) and keeps that precision through all its calculations.

1. Data plane D1 (ETM+ band 1, visible blue 0.48µm) undergoes a grayscale morphological opening operation (node 1.
OPEN) using a “circular” structuring element with diameter equal to 3 pixels (equivalent to a 3x3 square with corners
removed) and the result is written to scratch plane S1,

2. The negative of this plane is taken (node 3. NEG), i.e., S1 → – S1,
3. The new S1 is linearly combined (node 5. LINCOMB) with data plane D6 (ETM+ band 7, medium wavelength infrared

(MWIR) 2.22µm) with linear weights: 0.11*S1 + 0.89*D6 and the result written to scratch plane S3 (its final value),
4. Scratch planes S1 and S3 are summed (node 6. ADDP), and the difference (node 7. SUBP) of  this sum and data plane

D5 (ETM+ band 5, MWIR 1.65µm), S1 + S3 – D5, is written to S1 (its final value),
5. Data plane D4 (ETM+ band 4, near infrared 0.83µm) has a constant, 0.34 times a DATASCALE variable equal to the

range of the input raw data values, added to each pixel (node 2. ADDS) and is multiplied by D4 again to form the linear
combination D4*D4 + (0.34*DATASCALE)*D4, which is written to scratch plane S2 (its final value).

The final values of S1, S2, and S3 are then combined in the linear sum, where the coefficients and intercept have been chosen
by the Fisher discriminant, as described in Section 2.3, above, to produce our real-valued answer plane A (Figure 6):

A = 0.0147*S1 − 0.0142*S2 + 0.0134*S3 + 1.554

The optimal threshold found by GENIE, given the training data, was 0.3437.  Converting A to a Boolean mask at that
threshold value produces Figure 7.  In relation to the BAER map, Figure 3, we see that the system has extracted the high,
medium, and low severity burn regions, but also presents a number of false positives.  On inspection, these turn out to
correspond to two physical categories of land cover: bare ground/rock, and cloud shadows.  The histogram of A shows a
bimodal distribution (Figure 8), as expected if the burn/non-burn classes are separable. Adjusting the threshold on A to fall at
the between-peak minimum of the histogram at 0.7930 (a different optimization criterion for the threshold than that used by
default by GENIE) produces a new Boolean mask, Figure 9, in which almost all the false positives have been removed, and
the remaining pixels marked as “burn” correspond very closely to the high severity burn regions in the BAER map

S2

D4

7.SUBP

D1

6.ADDP

5.LINCOMB

4.MULTP

3.NEG

2.ADDS

1.OPEN

D5

D6

S1S3

Figure 5. Evolved image-processing algorithm: each node (gene) in the graph
is labeled by its position along the length of the chromosome and by the GENIE

software’s mnemonic for the primitive image processing operator.



3.3.  Application to Non-Training Data
The evolved algorithm can now be applied to any scene.  To check the reasonableness of our algorithm’s performance, we
ran the image-processing algorithm over a larger fraction of the Landsat scene, encompassing the entire Jemez mountain
range.  The result is shown in Figure 10.  We claim that this overall result is quite reasonable, and only fails where the
Landsat swath ends (which can be easily masked out).  Of particular interest is the persistent detection of a severe burn site
on the Western side of the Jemez mountains, Figures 10, 11, 12,  which cannot obviously be excluded due to cloud shadows
or data drop-out.  In fact, this turns out to be a true detection of a second wildfire, the Stable wildfire (effecting Stable Stream
and School House Mesa in the Jemez Mountains of northern New Mexico), which destroyed approximately 800 acres of
forest in September/October of 1999.  As GENIE had no knowledge of this fire during its training, we find this detection,
together with the reasonable behavior of the evolved image-processing algorithm over this large region, as quite encouraging
for the future usefulness of this machine learning technique.

4. CONCLUSIONS

We have investigated evolution of an image-processing algorithm to extract wildfire burn scars in Landsat 7 ETM+ imagery,
and have described the operation of the evolved algorithm in some detail.  The evolved algorithm shows a good qualitative fit
to the  published BAER Team burn-severity map of the May 2000 Cerro Grande/Los Alamos wildfire, specifically in
comparison to their high-severity burn class (70-100% tree mortality regions). The algorithm can be confused by dark cloud
shadows, and by bare ground/rock outcrops which are physically very similar to the charred remains of the severely burned
forest, but adjustment of its final threshold can significantly improve this behavior.  Applying the algorithm outside the
training area showed that it continued to produce reasonable results over a large spatial region, and in fact was able to detect a
second small wildfire on the west side of the Jemez mountains (September/October 1999 Stable wildfire).  We find these
results quite encouraging for the future application of this machine learning technique.

Figure 6. Real-valued Answer Plane: We use a
Fisher Discriminant to find the optimal linear
combination of  evolved “signature” planes into a real-
valued answer plane.  Regions which will tend to be
classified as “burn” are bright. This image has been
histogram-equalized to increase contrast.

Figure 7. Burn mask: GENIE determines an optimal
threshold for converting the real-valued answer plane
to a Boolean mask.  Misidentified pixels are mostly
cloud shadows (e.g., compact regions on left), or bare
ground/rock (lower right and bottom).



ACKNOWLEDGEMENTS

The authors would like to thank Leslie Hanson, Steven Koch, and Randy Balice of the Ecology Group for useful discussions
and access to data used in this work. The GENIE system is the result of the combined efforts of a team of people at LANL,
including, in addition to the authors of this paper: Reid Porter, Mark Galassi, Kevin Lacker, and Melanie Mitchell.

REFERENCES

1. The National Oceanographic and Atmospheric Administration (NOAA) POES satellites and the AVHRR instrument are
described on the NOAA web site  http://www.ncdc.noaa.gov

2. Landsat TM and ETM+ are described on the U.S. Geological Survey (USGS) web site  http://landsat7.usgs.gov
3. Y.J. Kaufmann, C.J. Tucker, and I. Fung, “Remote sensing of biomass burning in the tropics”, J. Geophysical Research,

Vol 95, No. D7, pp. 9927-9939, 1990, and references therein.
4. Y. Rauste, E. Herland, H. Frelander, K. Soini, T. Kuoremäki, and A. Ruokari, “Satellite-based forest fire detection for fire

control in boreal forests”, Int. J. Remote Sensing, Vol. 18, No. 12, pp. 2641-2656, 1997.
5. N.P. Minko, N.A. Abushenko, V.V. Koshelev, “Forest fire detection in East Siberia forests using AVHRR/NOAA data”,

Proc. SPIE, Vol. 3502, pp. 192-200, 1998.
6. R. Lasaponara, V. Cuomo, V. Tramutoli, N. Pergola, C. Pietrapertosa, and T. Simoniello, “Forest fire danger estimation

based on the integration of satellite AVHRR data and topographic factors”, Proc. SPIE, Vol. 3868, pp. 241-252, 1999.
7. S.H. Boles and D.L. Verbyla, “Effect of scan angle on AVHRR fire detection accuracy in interior Alaska”, Int. J. Remote

Sensing, Vol. 20, No. 17, 3437-3443, 1999.
8. A. Lobo, N. Pineda, R. Navarro-Cedillo, P. Fernandez-Rebollo, F.J. Salas, J.-L. Fernández-Turiel, and A. Fernández-

Palacios, “Mapping forest fire impact from Landsat TM imagery”, Proc. SPIE, Vol. 3499, 340-347, 1998.
9. J.D. Kushla and W.J. Ripple, “Assessing wildfire effects with Landsat thematic mapper data”, Int. J. Remote Sensing, Vol.

19, No. 13, 2493-2507.
10. S.P. Brumby, J. Theiler, S.J. Perkins, N.R. Harvey, J.J. Szymanski, J.J. Bloch, and M. Mitchell, “Investigation of feature

extraction by a genetic algorithm ”, Proc. SPIE, Vol. 3812, pp. 24-31,1999.
11. J. Theiler, N.R. Harvey, S.P. Brumby, J.J. Szymanski, S. Alferink, S.J. Perkins, R. Porter, and J.J. Bloch, “Evolving

retrieval algorithms with a genetic programming scheme ”, Proc. SPIE, Vol. 3753, pp.416-425,1999.

Figure 8. Histogram of the Answer Plane (Fig. 6):
The bimodal distribution indicates that “burn” and
“non-burn” are indeed separable classes.

Figure 9. Final burn mask: Thresholding the answer
plane at the between-peak minimum of the bimodal
distribution produces this burn mask, which has
almost eliminated false positives. There is substantial
agreement with the details of the BAER map (Fig.3).



Figure 10 Testing the evolved image-processing algorithm: Extended region (top)
and burn mask (bottom). The evolved image-processing algorithm continues to work
well, except at the edge of the Landsat swath (bottom image, lower right).  The small
black region on the left of the burn mask represents a true detection of a second
recent wildfire, the 1999 Stable wildfire.



12. N.R. Harvey, S.P. Brumby, S.J. Perkins, R.B. Porter, J. Theiler, A.C. Young, J.J. Szymanski, and J.J. Bloch, “Parallel
evolution of image processing tools for multispectral imagery”, Proc. SPIE, Vol. 4132, pp. 72-82, 2000.

13. S. Perkins, J. Theiler, S.P. Brumby, N.R. Harvey, R.B. Porter, J.J.Szymanski, and J. J. Bloch, “GENIE: A hybrid genetic
algorithm for feature classification in multi-spectral images”, Proc. SPIE, Vol. 4120, pp 52-62, 2000.

14. J. H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan, Ann Arbor (1975).
15. I. Rechenberg, Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution,

Fromman-Holzboog, Stuttgart (1973).
16. L. Fogel, A. Owens and M. Walsh, Artificial Intelligence through Simulated Evolution, Wiley, New York (1966).
17. N.R.  Harvey, S. Perkins, S.P. Brumby, J. Theiler, R.B. Porter, A.C. Young, A.K. Varghese, J.J. Szymanski, and J.J.

Bloch, “Finding golf courses: The ultra high tech approach”, Proc. Second European Workshop on Evolutionary
Computation in Image Analysis and Signal Processing (EvoIASP2000), Edinburgh, UK, pp 54-64, 2000.

18. S.P. Brumby, N.R. Harvey, S. Perkins, R.B. Porter, J.J. Szymanski, J. Theiler, and J.J. Bloch, “A genetic algorithm for
combining new and existing image processing tools for multispectral imagery”, Proc. SPIE, Vol. 4049, pp. 480-490, 2000.

19. J. R. Koza, Genetic Programming: On the Programming of Computers by Natural Selection, MIT, Cambridge (1992).
20. For example, see C.M.Bishop, Neural Networks for Pattern Recognition, pp.105 –112, Oxford University  (1995).
21. For details on RSI Inc.’s ENVI and IDL software, see http://www.rsinc.com
22. For details on ERDAS Inc.’s Imagine software, see http://www.erdas.com
23. For details on USGS EarthExplorer, see http://edcsns17.cr.usgs.gov/EarthExplorer.
24. R.A. Schowengerdt, Remote Sensing, 2nd ed., Academic, San Diego (1997).

Figure 11. Detail of the second detected burn:
Grayscale image, ETM+ band 7.

Figure 12. Burn mask for second detected burn:
Location agrees with the known 1999 Stable wildfire.


